Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

John M. Villegas, Stanislav R. Stoyanov, Curtis E. Moore, David M. Eichhorn and D. Paul Rillema*

Department of Chemistry, Wichita State University, Wichita, KS 67260, USA

Correspondence e-mail:
paul.rillema@wichita.edu

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.021$
$w R$ factor $=0.051$
Data-to-parameter ratio $=12.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

fac-Tricarbonyl(2,9-dimethyl-1,10-phenanthro-line)(2,6-dimethylphenyl isocyanide)rhenium(I) hexafluorophosphate

In the title compound, $\left[\operatorname{Re}\left(\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}\right)\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2}\right)(\mathrm{CO})_{3}\right] \mathrm{PF}_{6}$, the complex cation adopts a distorted octahedral geometry, with the Re atom at the center and a facial disposition of the three carbonyl ligands.

Comment

The title compound, (I), was synthesized as part of a series of diimine tricarbonylrhenium(I) complexes containing the ligand 2,6 -dimethylphenyl isocyanide. These complexes are highly emissive. The emission lifetimes are in the microsecond timescale both at room temperature and at 77 K . These complexes have potential usage as dyes for solar energy conversion cells as well as sensors.

(I)

The cation (Fig. 1) shows distorted octahedral coordination, with the Re^{I} atom in the center and the three carbonyl ligands arranged so that the facial isomer is formed. The $\mathrm{P}-\mathrm{F}$ distances in the anion are in the range 1.595 (3)-1.606 (3) \AA.

Experimental

The title compound was prepared by modifying the procedure of Wrighton \& Morse (1974). $\left[\mathrm{Re}(\mathrm{CO})_{5} \mathrm{Cl}\right](0.55 \mathrm{mmol})$ was added to an equimolar amount of 2,9-dimethyl-1,10-phenanthroline in a 125 ml round-bottomed flask. Absolute ethanol (50 ml) was added and the resulting mixture refluxed for $2-4 \mathrm{~h}$. A light-yellow precipitate of $\left[\mathrm{ReCl}\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2}\right)(\mathrm{CO})_{3}\right]$ was formed. The solution was cooled to room temperature and filtered. The solid obtained was dried in a vacuum oven. Following the procedure of Shaver \& Rillema (1992), the solid was combined with $\mathrm{AgCF}_{3} \mathrm{SO}_{3}$ in a 1:1 ratio in ethanol. The mixture was refluxed for $4-6 \mathrm{~h}$, resulting in the precipitation of AgCl and the formation of a $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$salt. The solution was allowed to cool to room temperature and the AgCl was removed by filtration. The solution was added to an equimolar amount of 2,6 -dimethylphenyl isocyanide and refluxed for another 3-5 h. The solvent was

Received 10 December 2004
Accepted 10 February 2005
Online 19 February 2005

F1

Figure 1
View of the title compound (50% probability displacement ellipsoids). H atoms have been omitted for clarity.
reduced in volume under vacuum. Saturated aqueous $\mathrm{NH}_{4} \mathrm{PF}_{6}$ $(15 \mathrm{ml})$ was then added to the solution. The volume was diluted with distilled water to 50 ml (until precipitation was complete). The precipitate was filtered and dried in a vacuum oven. About 15 mg of the sample was dissolved in nitromethane (1 ml) in an uncovered small vial. The small vial was placed inside a larger vial containing diethyl ether. The vial was covered loosely and the solvent mixture was allowed to diffuse and slowly evaporate. Light-yellow crystals of the title compound were formed.

Crystal data

$\left[\operatorname{Re}\left(\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}\right)\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2}\right)(\mathrm{CO})_{3}\right] \mathrm{PF}_{6}$ $M_{r}=754.63$
Monoclinic, $P 2_{1} / n$
$a=14.510$ (4) \AA
$b=11.223$ (4) \AA
$c=17.887$ (5) \AA
$\beta=113.53(2)^{\circ}$
$V=2670.6(14) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.877 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 24 \\
& \quad \text { reflections } \\
& \theta=1-25^{\circ} \\
& \mu=4.69 \mathrm{~mm}^{-1} \\
& T=100 \mathrm{~K} \\
& \text { Prism, yellow } \\
& 0.5 \times 0.3 \times 0.3 \mathrm{~mm} \\
& \\
& R_{\text {int }}=0.026 \\
& \theta_{\text {max }}=25.0^{\circ} \\
& h=0 \rightarrow 17 \\
& k=0 \rightarrow 13 \\
& l=-21 \rightarrow 19 \\
& 3 \text { standard reflections } \\
& \text { frequency: } 60 \text { min } \\
& \text { intensity decay: none }
\end{aligned}
$$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0226 P)^{2}\right. \\
& \quad+4.1906 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.57 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.60 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Re} 1-\mathrm{C} 2$	$1.920(4)$	$\mathrm{Re} 1-\mathrm{N} 1$	$2.196(3)$
$\mathrm{Re} 1-\mathrm{C} 1$	$1.994(4)$	$\mathrm{Re} 1-\mathrm{N} 2$	$2.203(3)$
$\mathrm{Re} 1-\mathrm{C} 4$	$2.063(4)$	$\mathrm{N} 3-\mathrm{C} 4$	$1.152(5)$
$\mathrm{C} 3-\mathrm{Re} 1-\mathrm{C} 2$	$84.56(15)$	$\mathrm{C} 1-\mathrm{Re} 1-\mathrm{N} 1$	$92.21(13)$
$\mathrm{C} 3-\mathrm{Re} 1-\mathrm{C} 1$	$90.93(15)$	$\mathrm{C} 4-\mathrm{Re} 1-\mathrm{N} 1$	$87.48(12)$
$\mathrm{C} 2-\mathrm{Re} 1-\mathrm{C} 1$	$95.39(16)$	$\mathrm{C} 3-\mathrm{Re} 1-\mathrm{N} 2$	$101.03(13)$
$\mathrm{C} 3-\mathrm{Re} 1-\mathrm{C} 4$	$89.12(15)$	$\mathrm{C} 2-\mathrm{Re} 1-\mathrm{N} 2$	$169.88(13)$
$\mathrm{C} 2-\mathrm{Re} 1-\mathrm{C} 4$	$89.59(15)$	$\mathrm{C} 4-\mathrm{Re} 1-\mathrm{N} 2$	$82.12(12)$
$\mathrm{C} 1-\mathrm{Re} 1-\mathrm{C} 4$	$175.01(14)$	$\mathrm{N} 1-\mathrm{Re} 1-\mathrm{N} 2$	$75.63(11)$
$\mathrm{C} 3-\mathrm{Re} 1-\mathrm{N} 1$	$175.53(13)$	$\mathrm{C} 13-\mathrm{N} 1-\mathrm{Re} 1$	$111.7(2)$
$\mathrm{C} 2-\mathrm{Re} 1-\mathrm{N} 1$	$98.32(13)$	$\mathrm{C} 14-\mathrm{N} 2-\mathrm{Re} 1$	$110.8(2)$

H atoms were inserted at calculated positions ($0.93-0.96 \AA$) and constrained with isotropic displacement parameters $\left[U_{\text {iso }}(\mathrm{H})=\right.$ $\left.1.2 U_{\text {eq }}(\mathrm{C})\right]$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank the Wichita State Office of Research Administration, the Department of Energy and Parker Fellowships (JMV and SRV) for support.

References

Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G., Giacovazzo, C., Polidori, G. \& Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Shaver, R. J. \& Rillema, D. P. (1992). Inorg. Chem. 31, 4101-4107.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.
Wrighton, M. \& Morse, D. L. (1974). J. Am. Chem. Soc. 96, 998-1003.

